Semi-quantitative mainstream method for estimating etCO2 value cannot be used for quantitative waveform display

Category: 日本光電 Cap-ONE mainstream etCO2 semi-quantitative measurement, its inappropriate use for continuous waveform display and the vulnerability of the compact CO2 sensors.



In this review, we remind the fact continuous waveform display on screen is a quantitative real time display and cannot be taken lightly using a semi-quantitative measurement as input.




The dangerous use of estimated CO2 values and displaying a flawed CO2 waveform

Nihon Kohden lacks sidestream CO2 sampling expertise and buys OEM units to offer them as expensive standalone. The AG-400 CO2 unit as shown, for example, is technology from Oridion Medical. For monitoring such as post-surgery recovery, integration of the sidestream CO2 into the monitor is a mandatory requirement because an external unit requires additional power socket besides necessitating the use of a trolley.
 
For some unknown weakness, Nihon Kohden monitors have never been able to offer benefits of integrated sidestream CO2 measurement.

 
The inability to integrate the sidestream CO2 unit into the patient monitor main unit

The adoption of semi-quantitative mainstream CO2 measurement was to reduce cost and its simplicity also help in miniaturization of the transducers. The first solution offered by Nihon Kohden was the mainstream cap-ONE TG-920P CO2 sensor kit (order code P907) that can be used on non-intubated patients.
 
The cap-ONE TG-920P CO2 sensor kit (P907) has very small sensors because semi-quantitative measurement is adopted, the method is not commonly seen and many are not aware of the risks of obtained CO2 readings from the semi-quantitative CO2 kit sets, and to make matter worse, the semi-quantitative measurements are also being made used of to display a flawed continuous CO2 waveform.
 

Nihon Kohden cap-ONE P907 (TG-920P) mainstream CO2 sensor kit


How to remove a relatively big disposable adapter from the two tiny transducers after use?
 
When the sensors become smaller, it also means the disposable adapter becomes relatively much bigger as seen in this below picture. When trying to remove the disposable adapter from the transducers, it is difficult to separate the two because of the latching mechanism. A small size transducer means anything that latches onto it must be even smaller.

It is not easy to separate the disposable adapter from the Cap-ONE transducers after use
 
When removing disposable adapter from the mini sensors, users tend to just pull from the cables and this action quickly weakens the joint holding the sensors and cables. The action will cause stress to the two joints and quickly degenerate the performance of the transducers. This means the transducers are unlikely to last.
 
Users just doing the inevitable

 
Shown below is another TG-900P etCO2 kit set (order code P903) that makes semi-quantitative CO2 measurements on a traditional mainstream CO2 sensor. The TG-901T3 kit set (order code P906) is the same thing but using a non-coded connection plug. The medical devices from same manufacturer that make use of semi-quantitative CO2 kit sets for patient CO2 measurements and waveform include:

- Life Scope patient monitors
- Vismo patient monitors
- Cap-STAT OLG-2800
- CardioLife defibrillators
- Neurofax EEG machines etc.

 
Nihon Kohden semi-quantitative CO2 kit sets with traditional mainstream transducer
 

The manufacturer is not aware semi-quantitative CO2 measurements are only estimates and sell it as cheap alternative to quantitative type
 
To save costs, the semi-quantitative kit sets do not make measurement during the inspiration phase. The important point is there is a measurement duty cycle and it is as shown; there is no way to know the actual CO2 measurements during the inspiration phase because CO2 measurements are not made.

Semi-quantitative means there is a duty cycle, and measurements are not continuous
 
Semi-quantitative measurement is also of low-accuracy type, performed using one IR detector instead of the usual two to save cost. This is reflected in the measurement tolerance.
 
Contrasting, quantitative measurement delivers high accuracy for critical care. To ensure the necessary high accuracy, quantitative measurement employed two IR detectors for simultaneous CO2 measurements at different wavelength for results comparison. CO2 measurements are also being made continuously.
 
Quantitative measurement employs two detectors to make continuous measurement at different wave-lengths to compare readings for high accuracy

NIHON KOHDEN specification for TG-901T CO2 sensor kit shows even the specified low accuracy of CO2 measurement using semi-quantitative method no longer holds true once CO2 is present during the inspiration phase.

This is because actual CO2 value will be more.
 

The manufacturer using a semi-quantitative design cannot assure the measurement tolerance specified because CO2 level is not measured during each inspiration phase!
 

Measurements are invalid when CO2 is present during inspiration, but the design does not measure CO2 level during this period

 
As seen from the duty cycle, there is no measurement being made during the inspiration phase, how does the manufacturer know there is no interference from this phase? The specified measurement tolerance is conditional on this assurance and the CO2 value shown to users is therefore misleading!

Each semi-quantitative CO2 measurement is in fact only an estimation.

In addition, since the users are not alerted on screen there is no CO2 measurement being made during the inspiration phase, they are unknowingly made to take on an unnecessary risk.

 
Semi-quantitative methodology means cost-effective estimations and the design cannot be used in a general way, only on a selective basis with known risks
 
For example, semi-quantitative methodology can be used as a simple estimation tool for obtaining the numerical value of End-tidal Carbon Dioxide level (etCO2).
 
Below picture shows the semi-quantitative method in the way it was intended for, estimating only the etCO2 numerical value for purpose of airway tube placement confirmation. It is not for continuous waveform display.

A hand-held semi-quantitative etCO2 estimation tool (with SpO2) for airway tube placement confirmation


The manufacturer ended up ignorantly displaying a flawed continuous CO2 waveform using semi-quantitative measurement kits that do not have ability to make continuous measurements

NIHON KOHDEN also allows data from semi-quantitative measurements to be displayed on screen with the non-measurement period reset to zero level. The insistence to display a continuous waveform using discontinuous measurement data from semi-quantitative mainstream CO2 estimation kits is unacceptable; the manufacturer is just subjecting the monitored patients and users to dangerous misinterpretation risks.
 
A zero CO2 reading on the waveform means zero measured value. No measurement can only mean a defective sensor, not by design!

Note the end tidal CO2 (etCO2) value shown is also not alerted as "estimated etCO2" only.
 
A flawed CO2 waveform with non-measurement intervals reflected as zero measured CO2 value
 
As seen from the two true CO2 traces below, expiratory upstrokes do not always start from zero CO2 level!

Quantitative measurements confirming expiratory upstrokes do not always start from zero CO2 level

  
Check the latest updated table to make sure you only use quantitative method for critical measurements and to display a true CO2 waveform on the screen.
 
Use only quantitative method for waveform display; the quantitative TG-950P (P905) shown here was already discontinued.


 
What you should know about fully-quantitative type miniaturized mainstream CO2 sensors

The TG-907P CO2 Sensor kit (order code P909) shown in above table is declared as using quantitative method. This sensor was designed for non-intubated adult CO2 monitoring, as well as neonatal CO2 monitoring. Nihon Kohden is thus offering an alternative to sidestream CO2 sampling methodology.
 
The miniaturized CO2 sensor is easily broken by the bigger and stronger adapter
 
In addition to the dead space problem, they had not foreseen miniaturized mainstream CO2 sensors could be easily broken by the disposable adapters. This happened because the disposable adapters are now relatively bigger and stronger!

These are common defects of a TG-970P CO2 sensor kit (P909). The design is impractical.



The fragile miniaturized CO2 sensor are clearly of poor design, and easily broken

The key point is, it does not last